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Muonic helium atom as a classical three-body problem
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We study the classical problem of the muonic helium atom, a helium atom with one of its electrons replaced
by a muon. First, we establish the connection of the model with the one-dimensional frozen planetary approxi-
mation of the helium atom and find that there is classically stable motion for the configuration
a-particle–electron–muon, and no stable motion for thea-particle–muon–electron configuration. After that,
we introduce the restricted muonic helium problem, a model for the movement of an electron in the potential
of the a particle/muon pair moving in a circular orbit. In this model, the equilibrium points, their associated
Lyapunov families of periodic orbits, and their stability parameters were studied. The most interesting feature
is the stability of the halo orbits, for a range of energy values. The vicinity of thea particle is also studied,
examining Poincare´ sections for increasing energy values showing an increase of the chaotic motion.

PACS number~s!: 05.45.2a, 31.10.1z
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I. INTRODUCTION

Interest in the formation of hadronic atoms goes back
the 1960s when experimental data from helium bub
chambers showed at-rest decay of pions and kaons@1,2#. The
experimental data of Iwasakiet al. @3# show an instance o

kaons bound to He1. Yamazakiet al. @4# observedp̄-atom
formation. This experiment seems to corroborate the tr
ping hypothesis formulated by Condo@5# to justify the ex-
periments of the early 1960s. Richteret al. @6# suggest a new
state of antiprotons bound to atoms with a highly polariz
electron located between the nucleus and the antipro
These states were inspired by classical considerations of
electrons in the field of a point nucleus in which both ele
trons are on the same side of the nucleus~‘‘planetary’’ at-
oms!. We search for such states~see below in Sec. III!.

Although helium and heliumlike atoms are essentia
quantum systems, a classical approach to these sys
might hint at different binding possibilities. Characteristi
of these systems that can be obtained by classical met
are the equilibrium points. The determination of these po
and their stability might be used to predict the local proba
ity distribution given by quantization. Phenomena typica
quantic, like interferences, cannot be analyzed by class
methods. Thus, effects of exchange forces cannot be con
ered in this framework.

The helium atom has been the object of several class
analyses. Some authors considered the possible equilib
configurations of the system@7,8#. These configurations ar
shown to be collinear. Other authors used a purely numer
approach to determine the orbits of the system for sev
kinds of dynamical configuration@9#. Heliumlike systems
have also been studied using a numerical approach@10,11#
and several dynamical configurations were examined
these authors. In this paper we deal with a muonic heli
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atom in which one electron is replaced by a muon.
In Sec. III we analyze the one- and two-dimension

cases. The known stable motion for the unidimensional
lium atom @7,8# also exists for our case if we take the co
figuration a-particle–electron–muon. This agrees with t
findings of@6# for the antiproton. There is no unidimension
stable orbit if we consider the configuratio
a-particle–muon–electron. However, in a rotating system
reference, the analysis of the forces present in this sys
permits the conclusion that there is only one possible col
ear equilibrium configuration, which is a center-cente
saddle configuration.

The preliminary estimates shown in Sec. IV encoura
the derivation of the restricted muonic problem. The gra
tational restricted three-body problem~RTBP! has been
widely studied by many authors~see, for instance,@12,13#!.
In a similar way, in Sec. IV we derive a model with th
muon in circular orbit around thea particle in a synodical
reference system. This is called the restricted muonic hel
problem~RMHP!. This model has three equilibrium point
Its linear stability and the zero velocity curves~ZVC! are
discussed in Sec. V.

In Sec. VI we calculate the Lyapunov periodic orbits a
sociated with the equilibrium points. As in the gravitation
case there is a bifurcation where halo orbits are produc
The interesting feature is that these can be stable for a ce
range of energy values. This provides stable orbits where
electron moves, energetically speaking, outside
a-particle well, while the muon orbits thea particle in a
circular orbit. According to Kolmogorov-Arnol’d-Mose
~KAM ! theory there is a two-parameter Cantorian set
three-dimensional~3D! invariant tori around each stable ha
orbit.

In Sec. VII we regularize the electron–a-particle collision
and present some numerical results, showing that the re
grade orbits are more stable than the direct ones. In f
there are retrograde KAM tori subsisting for energy valu
higher than that of the saddle-center point. These orbits,
halo orbits, and their surrounding 3D tori are instances
regular stable orbits outside the energy boundary of
7831 ©2000 The American Physical Society
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a-particle particle well. In this sense they are related to
unidimensional approximation or frozen planetary appro
mation ~FPA!.

II. THE FULL PROBLEM IN AN INERTIAL FRAME

Consider three particlesPi , i 51,2,3, with massesmi at
positions given byr i , with respect to an inertial Cartesia
frame (x,y,z) with origin at the center of mass of the syste
In this frame we define Jacobi’s coordinates as follows:

r15r22r1 , r25r32r12, r125
m1r11m2r2

m11m2
, ~1!

where r12 gives the position of the center of mass of t
particlesP1 andP2 ~see Fig. 1!.

The kinetic energyT5 1
2 ( jmj ṙ j expressed in Jacobi’s co

ordinates is given by:

T5
1

2
m12ṙ1

21
1

2
m3ṙ2

2, ~2!

where the reduced masses arem125m1m2 /m11m2 andm3
5m3(m11m2)/(m11m21m3). The conjugate momenta t
r1 andr2 arep15m12ṙ1 andp25m3ṙ2, respectively. For the
potential energy we have

V~r1 ,r2!5V12~r1!1V13S r21
m2

m11m2
r1D

1V23S r22
m1

m11m2
r1D , ~3!

so that the energy of the system isH(r1 ,r2 ,p1 ,p2)5T1V.
Now we takeP1 , P2, andP3 asa particles, muons, and

electrons with chargesQ152e andQ25Q352e, so that we
have the classical configuration of a heliumlike atom. T
values of the masses used arema5m154.002 602 u,mm
5m250.110 303 035 u,me5m35(5.485 79931024 u and
u5931.494 32 Mev/c2, where u is the unit of atomic mass

The only forces acting on the particles are their mut
Coulomb attraction or repulsion. This is the main dynami
difference from the gravitational three-body problem, whe
the forces depend only on the masses and are always a
tive. In our case, we will neglect the gravitational forc
since they are much smaller than the Coulomb ones.

We then have that the general form of the Hamiltonian

FIG. 1. Jacobi’s coordinates for three masses.
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H~r1 ,r2 ,p1 ,p2!

5
p1

2

2m12
1

p2
2

2m3
1e2F2

2

ur1u
2

2

ur21@m2 /~m11m2!#r1u

1
1

ur22@m1 /~m11m2!r1uG . ~4!

The associated Hamiltonian equations are

ṗi52
]H

]ri
, ṙi5

]H

]pi
for i 51,2. ~5!

This system has six degrees of freedom and its phase s
has dimension 12 since we have already used the integra
the center of mass. The only constants of motion left are n
the Hamiltonian itself and the angular momentum, whi
reduces the phase space dimension to 8, a four-degree
freedom problem. We start dealing with the planar case
gain some insight into its dynamical properties. Through
this paper all quantities shown in the figures are dimensi
less.

III. PLANAR MOTION

We takef andc as the angles made byr1 andr2 with
the x direction, respectively, andr̂1 ,f̂,r̂2 ,ĉ is the associ-
ated orthonormal basis. The momenta can be written as

p15m12ṙ1 , pf5m12r1
2ḟ, p25m3ṙ2 ,

pc5m3r2
2ċ, ~6!

so that the kinetic energy is

T~r1 ,f,r2 ,c,p1 ,pf ,p2 ,pc!

5
1

2m12
S p1

21
pf

2

r1
2 D 1

1

2m3
S p2

21
pc

2

r2
2D . ~7!

The potential energy expressed in terms ofu5c2f be-
comes

V~r1 ,r2 ,u!5e2H 2
2

r1
22Fr2

21S m2r1

m11m2
D 2

1
2m2

m11m2
r1r2cosuG21/2

1Fr2
21S m1r1

m11m2
D 2

2
2m1

m11m2
r1r2cosuG21/2J ~7a!

and the constants of motion are obviouslyH5T1V and the
angular momentumL5m12r1

2ḟ1m3r2
2ċ.

A. The unidimensional problem

First, we study the possibility of existence of stable u
dimensional configurations, that is,L5ḟ5ċ50. The elec-
tron and muon are moving unidimensionally and the probl
is reduced to two degrees of freedom. In the case of
helium atom, for initial conditionsa-particle–electron–
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FIG. 2. Poincare´ section (r2 ,p2), E521, r150, andp1.0 for the one-dimensional atom~a! a-e-e; ~b! a-m2-e, m2 /me530; ~c! a-
e-m.
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electron, there exists stable motion for this situation kno
as the frozen planetary approximation~see@6–8#!. We inves-
tigate the possibility of such an approximation for muon
helium.

The Hamiltonian can be obtained from Eq.~4! and it is

H~r1 ,r2 ,p1 ,p2!5
p1

2

2m12
1

p2
2

2m3
1e2F2

2

ur1u

2
2

ur21@m2 /~m11m2!#r1u

1
1

ur22@m1 /~m11m2!r1uG . ~8!

The collision of thea particle and muon has been regula
ized in the way explained in Sec. VII below. Different valu
of the massm2 have been considered, from the mass of
electronme to the mass of the muonmm . For each value of
the massm2, integrating the regularized Hamiltonian equ
tions, Poincare´ sections for$r150, p1.0% have been com-
puted. Figure 2~b! shows one of these sections for the p
ticle with m2 /me530; the periodic orbit that corresponds
the FPA is at 6.3, and it bifurcates to an unstable o
around m2 /me535. Therefore the system
a-particle—muon–electron,m2 /m3.200, does not have
this unidimensional stable configuration.

However, if we regularize the electron–a-particle colli-
sion and continue the problem from the electron equilibri
point at 5.8, changing the mass ofm2 as above, the equilib
rium remains up tom2 /me5mm /me5201.070 132. This
agrees with the findings of@6# for the antiproton. The Poin
n

e

-

it

caré section of the helium case and of muonic helium a
show in Fig. 2~a! and 2~c!. Note that the equilibrium point in
Fig. 2~c! is only slightly shifted to the left. However, th
orbits around the equilibrium point are much slower in t
muon case. Samples of typical muon and electron orbits n
the resonant one are shown in Figs. 3~a! and 3~b!, respec-
tively.

B. Circular orbits

Since we have seen that there is no stability for the c
figurationa-m-e in an inertial reference frame, we are goin
to investigate if there are collinear equilibria with respect
a rotating frame with angular velocityv, that is, with circu-
lar orbits for the three particles in an inertial frame of refe
ence.

We now search for collinear equilibria, and for such w
set u50, c5f, or u5p, c5f1p. In this casev5ḟ
5ċ is the common angular frequency. From the conser
tion of angular momentum we haveL/v5m12r1

21m3r2
2, and

can taker2
25(1/m3)(L/v2m12r1

2) to express bothr2 andṙ2

in terms ofr1 and ṙ1 in the Hamiltonian given by Eqs.~7!
and ~7a!. The new Hamiltonian for the collinear motion is

H5
vL

2
1

1

2m12
F11

m12

m3
S r1

r2
D 2Gp1

21V6~r1! ~9!

with

V6~r1!5Q2F2
2

r1
22Ur26

m2

m11m2
r1U21

1Ur27
m1

r1U21G , ~10!

m11m2

-

FIG. 3. Typical orbits (r2 ,p2)

near the equilibrium configura
tions: ~a! electron orbit in case of
Fig. 2~a!; ~b! muon orbit in case of
Fig. 2~c!.
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wherer2 takes the value mentioned above, and the indi
6 stand for cosu561.

The singularities of the potential arer150 and

r1
j 5F L

vm3
S m12

m3
1

mj
2

~m11m2!2D 21G 1/2

,

where j 51,2. If r150, we have the maximum value ofr2 ,
r2max5AL/vm3, and conversely, ifr250, then r1max

5AL/vm12.
For the case of a muon there is only one equilibriu

point, found for V2 , i.e., when u5p. Its value is r1e
50.940 037 73 which corresponds tor2e54.771 376 98 in
units of r1max. At this point the second derivative of th
potential is negative, a maximum, which means an unsta
fixed point.

The equilibrium position of the electron,r2e , being rea-
sonably far away from the paira-particle–muon allows us to
look at the problem of an electron moving in the potent
created by the pair revolving about their common center
mass. Of course, this approximation becomes better for
tions of the electron around and near this position. Howe
numerical tests show that the approximation is accepta
under less stringent requirements. In the next section
study the reduction to a restricted three-body Coulomb pr
lem in synodic coordinates. We claim that findings with su
an approximation can be used to get information on the
system by continuation reasoning.

IV. THE RESTRICTED MUONIC HELIUM PROBLEM

Suppose that thea and muon particles are moving i
circular orbits around their center of mass. We are going
derive the equations of motion of an electron under the C
lomb forces of thea-particle–muon pair. This restricte
muonic helium problem approximation of the full proble
has to be handled with care. On the other hand, the
problem may be written as a RMHP plus perturbations. T
would allow us to obtain orbits of the full problem by mea
of continuation techniques.

Moreover, in this approximation, we essentially assu
that the motion of the electron does not disturb the unifo
circular motion of the muon around the helium nucleus.
sufficient condition for the validity of this assumption is th
the distance of the electron from thea particle is much larger
than thea-particle–muon distance. The sufficiency of th
condition can be evaluated by comparing the position of
equilibrium point given by the exact solution in Sec. III an
the approximate calculation of the next section. The rela
error is 0.004 564 8.

Another circumstance in which the approximate desc
tion may be used is in some cases of a very rapid passag
the electron near thea particle. It can be shown that, if th
time of interaction is sufficiently small, the impulse transm
ted by the electron to the muon may be neglected.

We considered very elongated orbits of the electron al
the negativex axis, turning around thea particle in the ro-
tating frame. The recoil velocity of the muon in thex direc-
tion (vmx), due to the electron impulse, is compared with t
muon velocity in the circular orbit of the inertial fram
(vmc). The relationvmx /vmc is energy dependent, as can
s
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seen in the table below.

2E 36 38 40 70 100

vmx /vmc 0.11 0.049 0.030 0.013 0.00

By inspection, we see that for energies lower thanE
5240.0 the impulse of the electron on the muon becom
negligible. These calculations were done using the regu
ization described in Sec. VII. We proceed now to present
RMHP.

To derive the equations of the RMHP we find first th
parameters of the circular motion of the muon around thea
particle. This is a two-body problem. Consider an inert
reference frame with the origin at the center of mass. Ler1
and r2 by the vector positions of the massesm1 and m2,
which are the masses of thea and muon particles, respec
tively. The relative position is denoted byr5r22r1. We
also have

r15
2m

m1
r, r25

m

m2
r,

where the mass parameter ism5m1m2 /(m11m2). The
charges of thea and muon particles areQ152e and Q2
52e, respectively. Defining asf the angle ofr with the x
direction, the energy of the system can be written as

E5
1

2
m~ṙ21r2ḟ2!2

2e2

r
. ~11!

Taking into account the conservation of the angular mom
tum of the system,L5mr2ḟ, and the minimum of the cor-
responding effective potential, the radius of the circular or
rcir , and its corresponding angular velocity are

rcir5
L2

2me2
, v5

4me4

L3
.

So they satisfy the relationship

v2rcir
3 5

2e2

m
, ~12!

similar to Kepler’s third law.
We now take a frame centered at the center of ma

rotating with the constant angular velocityv and with thex
axis having the direction ofr. Here, the mass of the electro
is denoted bym and its position isr. In this system the
equation of motion for the electron is

m
d2r

dt2
5F11F22mv3~v3r !22mv3

dr

dt
, ~13!

wherev5v ẑ and the Coulomb forces of thea particle and
the muon on the electron are given by

F1522e2
r2r1

ur2r1u3
, F25e2

r2r2

ur2r2u3
, ~14!
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where r15x1x̂, r25x2x̂ with x152(m/m1)rcir and x2
5(m/m2)rcir . Expressing Eq.~13! in Cartesian rotating co
ordinates, we get

ẍ52
e2

2mF2~x2x1!

r 1
3

2
x2x2

r 2
3 G1v2x12v ẏ,

ÿ52
e2

2mF 2

r 1
3

2
1

r 2
3Gy1v2y22v ẋ, ~15!

z̈52
e2

2mF 2

r 1
3

2
1

r 2
3Gz,

where r i
25(x2xi)

21y21z2, for i 51,2. To use a dimen
sional coordinates we perform the change

X15x1 /rcir , X25x2 /rcir ,

R5r/rcir , t5vt.

Denoting the variables with lower case letters again, we h
the following set of equations:

ẍ22ẏ5
]V

]x
52

m̄

2 F2~x2x1!

r 1
3

2
x2x2

r 2
3 G1x,

ÿ12ẋ5
]V

]y
5F12

m̄

2 S 2

r 1
3

2
1

r 2
3D Gy, ~16!

z̈5
]V

]z
52

m̄

2 F 2

r 1
3

2
1

r 2
3Gz,

where the derivatives are now with respect to the a dim
sional timet. Moreover, we have introduced the parame
m̄5m/m5195.677 717 5, for the present values. We n
that the relationship~12! was used in the derivation of Eqs
~16!. The potential function is then defined as

V~x,y,z!5
m̄

2 F 2

r 1
2

1

r 2
G1

1

2
~x21y2!. ~17!

This system has an integral of motion similar to the Jac
integral for the RTBP:

CJ52V2~ ẋ21 ẏ21 ż2!, ~18!

CJ being the Jacobi constant of motion. Therefore, we
write a Hamiltonian for the system,

H~q,p!5
1

2
~px

21py
21pz

2!1ypx2xpy2m̄F 1

r 1
2

1

2r 2
G ,
~19!

with q5(x,y,z) and p5(px ,py ,pz). The conjugate mo-
menta are expressed bypx5 ẋ2y, py5 ẏ1x, andpz5 ż, and
therefore the Coriolis potential appears rather than the c
trifugal potential. We note that the value of the Hamiltoni
function is2CJ/2.
e

-
r
e

i

n

n-

The corresponding Hamilton equations can easily be
rived and they are

ẋ5px1y,

ẏ5py2x,

ż5pz , ~20!

ṗx5py2m̄F x2x1

r 1
3

2
x2x2

2r 2
3 G ,

ṗy52px2m̄F 1

r 1
3

2
1

2r 2
3Gy,

ṗz52m̄F 1

r 1
3

2
1

2r 2
3Gz.

These equations present two symmetries:

S1 :~x,y,z,ẋ,ẏ,ż,t !↔~x,y,2z,ẋ,ẏ,2 ż,t !, ~21!

S2 :~x,y,z,ẋ,ẏ,ż,t !↔~x,2y,z,2 ẋ,ẏ,2 ż,2t !. ~22!

The equations of the RTBP also present the same symme
S1 andS2. They are useful for looking for periodic orbits.

V. FIXED POINTS AND THEIR LINEAR STABILITY

We can find the fixed points of system~16! by taking
Vx5Vy5Vz50, i.e., setting the partial derivatives of th
potential-like function equal to zero, as well asẋ5 ẏ5 ż50,
or, equivalently, as the equilibrium positions of the Ham
tonian vector field. Both lead to the following set of equ
tions for the configuration variables:

x2
m̄~x2x1!

r 1
3

1
m̄~x2x2!

2r 2
3

50, ~23!

S 12m̄F 1

r 1
3

2
1

2r 2
3G D y50, ~24!

2m̄F 2

r 1
3

2
1

r 2
3Gz50. ~25!

First, we look for collinear equilibrium points, that is, wit
y5z50. Later on, we will see that there are also two ad
tional equilibrium points withzÞ0.

Then, in the collinear case, the previous system is redu
to Eq.~23!. One can look for an equilibrium point on the le
of thea particle, between it and the muon, or on the right
the muon particle. Each case leads to a quintic equation
has to be solved numerically. It is easy to see that only
first case is possible. To look for solutions on the negat
axis to the left of thea particle, we callj5r 15x12x; then
r 25x22x511j andx5x12j. Equation~23! becomes
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j2x12
m̄

j2
1

m̄

2~11j!2
50, ~26!

and we obtain the quintic equation

2j512~22x1!j412~122x1!j32~2x11m̄ !j2

24m̄j22m̄50. ~27!

Using x1520.026 818 770, x250.973 181 23, and m̄
5195.677 717 5, the positive solution of Eq.~27! gives the
equilibrium point atx0525.052 559 73. Note that this solu
tion is quite close to the value we found in the full proble
~see Sec. III B!.

Figure 4 shows the zero velocity curves of the RMHP.
this figure, the saddle-center character~on thex-y plane! of
the equilibrium point is visible. The energy of the equili
rium point is h05235.462 460 13. For lower values of th
energy the Hill regions are bounded around thea particle.
Conversely, for values of the energy higher thanh0 the Hill
regions are unbounded.

We shall now examine the linear approximation in t
neighborhood of the equilibrium point. The linearization
Eqs.~20! around the equilibrium point is

S ḣ1

ḣ2

ḣ3

ḣ4

ḣ5

ḣ6

D 5S 0 1 0 1 0 0

21 0 0 0 1 0

0 0 0 0 0 1

2a 0 0 0 1 0

0 2a 0 21 0 0

0 0 2a 0 0 0

D S h1

h2

h3

h4

h5

h6

D ,

~28!

FIG. 4. The zero velocity curves of the RMHP. The inner clos
curves on the left allow bounded motion around thea particle; the
right hand closed curves are the repulsive barrier of the muon.
where

a5
m̄

~x12x0!3
2

m̄

~x22x0!3
.

The eigenvalues of this system are61.078 905 96i ,
60.508 283 18 and61.046 094 51i , showing that the equi-
librium point is a center-saddle-center point. We also wan
comment that by performing a linear symplectic change
variablesh5Sz it is possible to express the Hamiltonian
the system~28! as

H25
1.078 905 96

2
~z1

21z2
2!10.508 283 18z3z4

1
1.046 094 51

2
~z5

21z6
2!. ~29!

Moreover, the Eqs.~23!, ~24!, and~25! have a pair of solu-
tions with zÞ0. They are (3.291 470 90,0,62.054 586 76).
We note that this kind of equilibrium point does not appe
in the gravitational RTBP. In this case, the eigenvalues of
linearization of Eq. ~20! are 60.962 566 456i ,
60.849 046 03260.919 283 615i .

VI. LYAPUNOV AND HALO ORBITS

In the previous section, the linear stability of the equili
rium points was discussed. The knowledge of periodic orb
is important for some semiclassical methods and leads
promising results@7,14–17#. We now present the periodi
orbits around those points. In the collinear case, the Ham
tonian system~20! has two families of periodic orbits ema
nating from the equilibrium point. Each family correspon
to one of the harmonic oscillators of the linearized syst
~28!. These families of orbits are usually called Lyapun
orbits @18#.

The problem of finding a periodic orbit is reduced to loo
ing for a fixed point of the Poincare´ map defined by the flow
of Eq. ~20! through a transverse section. In our case, we h
used the section$y50%. Figure 5 shows several orbits of th
planar Lyapunov family. We notice that as Lyapunov orb

FIG. 5. The family of planar Lyapunov periodic orbits. Th
orbit labeled as BO is the bifurcating orbit from which halo orb
appear.
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grow and approach collision they move to the right. A co
tinuation method~also called the homotopy method! has
been used to follow the periodic orbits along the family~for
more details about the numerical methods see@19,20#!.

To study the linear stability of each orbit, its monodrom
matrix has been used. The monodromy matrix is obtained
integrating the variational equations along the orbit. Beca
of the Hamiltonian character of the system, the~eventually
complex! eigenvalues of the monodromy matrix are of t

FIG. 6. y,z projection of the vertical Lyapunov orbits that, as
the RTBP, are 8 shaped. Notice that these orbits are very narro
the y direction.
-

y
e

form l1 , 1/l1 , l2 , 1/l2, apart from 1, with multiplicity 2.
The stability parameters are defined assk5lk11/lk for k
51,2. An orbit is linearly stable if its stability parameters a
real and their absolute values are less than 2.

The planar Lyapunov orbits near the equilibrium point a
elliptic-hyperbolic. The hyperbolic directions are on thex-y
plane, while the elliptic one corresponds to thez coordinate.
The bifurcation of the halo occurs when there is a chan
from stable to unstable in the Lyapunov family in thez di-
rection. In Fig. 5 the bifurcating orbit has been labeled
BO.

Figure 6 shows several orbits of the vertical Lyapun
family of periodic orbits. They are called vertical becau
they start from the equilibrium point in the direction of thez
coordinate and they are very narrow in thex andy directions.
Sometimes they are also called the 8-shaped family. As
as we have followed this family, all the orbits are ellipti
hyperbolic.

Another way to understand why the bifurcation of th
halo orbits takes place as follows. We recall that we saw
Sec. V that the equilibrium point has two different freque
cies, but they are quite close. Following the family of plan
Lyapunov orbits, the frequency~or the period, if you prefer!
varies. Moreover, the frequency in the vertical direction a
varies along this family. The bifurcation of the Halo occu
when the frequency of the Lyapunov orbit coincides with t
frequency in the vertical direction. There, two families

in
s
FIG. 7. ~a! Detail of the evolution of the halo orbits in thex,z projection;~b! they,z projection;~c! evolution of the stability parameter
from the bifurcation up to the orbit with maximumz; ~d! continuation of the stability parameters fromz maximum toward thea particle. The
orbits zP(0.233,0.591) andz,0.16 are all stable.
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FIG. 8. Left to right, top to bottom: Poincare´ sectiony50,py,0 in physical variables for2E5120.0, 100.0, 70.0, and 38.0. The rig
hand side represents retrograde orbits while the left hand side shows direct orbits of the electron.
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halo orbits are created. These families are symmetric w
respect to thex-y plane because of the symmetry~21!.

Figure 7~a! shows a detail of evolution of the one of th
halo families (x,z projection!. The solid line shows the
maximum and minimum values ofz reached by them. Figure
7~b! shows they,z projection of some of these orbits. Th
evolution of the stability parameter from the bifurcation
to the maximumz value reached by the halo orbits is show
in Fig. 7~c!. The continuous line represents real stability p
rameterss1 ands2. In regions where they are complex co
jugate we show the real and imaginary parts ofs1 with a
discontinuous line. After thez-maximum orbit we still con-
tinue the family toward thea particle. This evolution is
shown in Fig. 7~d!. It is very important to point out that fo
zP(0.233,0.591) the orbits are stable. They are also st
for z,0.16, but they are small orbits rather near thea par-
ticle.

Stable halo orbits have two normal frequencies, besi
the proper frequency. According to KAM theory@21,22#,
around each halo orbit there is a two-parameter Canto
family of 3D invariant tori. This family of tori can be labele
with three parameters: one for the corresponding perio
halo orbit and two more for the amplitudes with respect
that halo orbit. The frequency, generically, varies on mov
these parameters. The family of 3D invariant tori is no
continuous family, it is a Cantor set, and there are gaps
tween the tori. An electron orbiting in one of these gaps m
escape as a consequence of Arnol’d’s diffusion@23#. How-
th

-

le

s

n

ic

g

e-
y

ever, the time to escape would certainly be very long@24#.
So there is a subset of the phase space around stable
orbits where an electron may probably remain for a lo
time. Sometimes, such subsets are said to be effecti
stable. We also want to comment that the 3D invariant t
can be computed using the numerical method describe
@25# or semianalytically using the Lindstedt-Poincare´ method
as in @26#. But this computation is beyond the scope of th
article.

Finally, we want to comment that we have also compu
the Lyapunov families of periodic orbits emanating from t
equilibrium points withzÞ0. All those orbits have some
~real or complex! unstable part and so they are not intere
ing unless the quantization method is such as to need s
mation over all periodic orbits@16#.

VII. REGULARIZATION
OF THE ELECTRON –a-PARTICLE COLLISION

To study numerically the bounded orbits in the vicinity
the a particle, it is convenient to regularize the electron
a-particle collision. The singularity of the muon does n
affect numerical calculations since it is a repulsive singul
ity.

In the planar case, i.e., for two degrees of freedom, thi
easily done through the Levi-Civita´ procedure. However, the
three-degrees-of-freedom case is much more involved s
in this case the extension of the Levi-Civita´ procedure re-
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FIG. 9. Display of retrograde KAM remnant curves in Levi-Civita´ variables.~a! E5238.0;~b! E5237.0~note that the triangular KAM
tori structure collapses to an unstable orbit!; ~c! E5236.5 ~the triangular structure reappears inverted!; ~d! E5234.5.
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ime
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quires a four-degrees-of-freedom configuration with one c
straint. In that case, it is necessary to use the Kustaanhe
Stiefel transformation@27,28#. Here, we shall deal only with
the planar case.

We make a translation to bring thea particle to the ori-
gin, x̄5x2x1, so that Hamiltonian~19! becomes~calling x̄,
x again!

H̄5
1

2
~px

21py
2!1ypx2~x1x1!py

1m̄F 1

~x21y2!1/2
2

1

2~~x21!21y2!1/2G . ~30!

We now apply the change of variables known as the Le
Civitá transformation, given by

S x

yD 5S x̂ 2 ŷ

ŷ x̂
D S x̂

ŷ
D , ~31!

the induced conjugate momenta transformation being

S px

py
D 5

2

r̂ 2 S x̂ 2 ŷ

ŷ x̂
D S p̂x

p̂y
D , ~32!
-
o-

i-

wherer̂ 25( x̂21 ŷ2)5r 5(x21y2)1/2. To complete the regu-
larizing procedure it is also necessary to change the t
scale,

dt̂5
4 dt

r
. ~33!

Using Eqs. ~31!, ~32!, and ~33! in Ĥ(q̂,p̂)
5(r /4)@H̄(q̂,p̂)1p0#, the regularized Hamiltonian is~sup-
pressing carets!

H5
p0

2

~x21y2!

2
1

1

2
~px

21py
2!1

1

2
~x21y2!~ypx2xpy!

2
x1~ypx1xpy!

2
1

m̄~x21y2!

8@~x21y2!222~x22y2!11#1/2
,

~34!

with c5p0/252h̄/2, where h̄ is the chosen value of the
energy branch ofH̄.

Numerical results

As expected, integration of the equations derived from
Hamiltonian ~34! allows comfortable numerical work. Th
first thing we point out is the fact that the chaotic region
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FIG. 10. The small KAM zone forE5233.8 when the fixed points in the Poincare´ map of Fig. 9~d! have bifurcated:~a! orbit in the
configuration space;~c! and ~d! details of the Poincare´ section in physical variables.
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fairly large even for values of the energy far from the op
ZVC. We show in the next figures the Poincare´ section de-
fined by y50, ẏ,0. The initial conditions were chosen i
the physical variables just before the regularizing trans
mation with thea particle at the origin. This is cumbersom
but it helps to keep track of the original physical problem

In Fig. 8 we show some Poincare´ sections in physica
variables. These are obtained from the section in Levi-Civ´
variables by applying the inverse transformation. To be a
to show the sections of retrograde and direct motion in
same figure we changed the sign of thex variable for the
direct orbits and they are shown on the left hand side of
figure. The sections for the direct orbits show that they
come completely chaotic before the retrograde ones. The
rograde orbits, on the left of the figure, stay on KAM tori f
a certain range of energy higher than the energy of the sa
center, i.e, after the opening of the ZVC. This is shown
Fig. 9 in Levi-Civitá variables. Before the ZVC open, th
triangular shaped KAM region is inverted@Fig. 9~c!#, after
collapsing@Fig. 9~b!#, and subsists after the ZVC open.
Fig. 10~a! we show a projection onto the configuration spa
of this final KAM region for E5233.8 using the physica
variables. There is no persistent large KAM region as in
Hill problem @29#.The details of the tiny islands of the Poin
caré section are shown also in physical variables in Fi
10~c! and 10~d!. As can be seen in these figures, the bou
r-
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orbits ~periodic and tori! always pass between the muon a
the a particle.

VIII. FINAL COMMENTS

The full classical problem for muonic helium is a fou
degrees-of-freedom problem. The only Hamiltonian syste
that are completely understood~classically! are those with
two degrees of freedom. So the approximations made in
paper are meant as a contribution toward the understan
of the full problem, with techniques of numerical continu
tion using the results we present here as first guesses.

The unidimensional atom has proved very useful in
understanding of quantum states in several atoms. The
found here for the configurationa-particle–electron–muon
suggests the existence of quantum bound states, and
could be confirmed using the Born-Oppenheimer approxim
tion as was done in@6# for antiprotonic helium, since the
same arguments used by these authors are also valid
muonic helium.

Our findings near the center-center-saddle equilibri
point on the left of thea-particle–muon pair, in the synodi
reference system, are also an interesting feature. The
punov orbits bifurcate into halo orbits that have a range
stability. This means that while the muon revolves arou
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thea particle in circular motion there are periodic orbits a
3D KAM tori to the left of the pair. There are bound classic
states, which might correspond to stable or metastable q
tum states since their energy is above the energy of the c
sical well around thea particle. Since these orbits are su
rounded by tori they could be studied with EB
quantization. The same is true for the orbits shown in F
10~a! which also have energy above the limits of the class
well. The difference between these two types of orbit and
FPA is that they always come near or between the cen
pair, while in the FPA the electron~helium atom! or the
heavy particle keeps away from the central pair. Inside
classical well retrograde orbits, i.e., electrons that are slo
s.

a,
e

ys

e

v.

,

l
n-
s-

.
l
e
al

e
er

than the muon in circular orbit, are more regular than fas
ones ~direct orbits!. To conclude, we note again that an
periodic orbit of the restricted muonic helium problem c
be continued to the orbits of the full problem.
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Poincaré ~Société Mathématique de France, Paris, 1996!,
pp. 1–23.
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